Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Dairy Res ; 90(3): 257-260, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37615115

RESUMO

In dairy production, high feed efficiency (FE) is important to reduce feed costs and negative impacts of milk production on the climate and environment, yet little is known about the relationship between FE, eating behaviour and activity. This research communication describes how cows differing in FE, expressed as daily energy corrected milk production per unit of feed intake, differed in eating behaviour and activity. We used data from a study of 253 lactations obtained from 97 Holstein and 91 Jersey cows milked in an automatic milking system. Automated feed troughs recorded feed intake behaviour and cows wore a sensor that recorded activity from 5 to 200 d in milk (DIM). We used a mixed linear model to estimate random solutions for individual cows for traits of steps, lying and eating behaviour and calculated their correlation with FE during four periods (5-35, 36-75, 76-120 and 121-200 DIM). Separate analyses were performed for each breed and period. We found that individual level correlations between FE and behaviour traits were stronger in Jersey than in Holstein cows. Eating rate correlated weakly negatively to FE in Holstein cows and more strongly so in Jersey cows, such that efficient Jerseys were slower eaters. The physical activity of Jersey cows was weakly and negatively correlated to FE, but this was not the case in Holstein cows. We conclude that eating rate was consistently negatively associated with FE throughout lactation for Jersey cows, but not for Holstein cows.


Assuntos
Ração Animal , Lactação , Feminino , Bovinos , Animais , Ração Animal/análise , Ingestão de Alimentos , Comportamento Alimentar , Leite , Dieta/veterinária
2.
Front Genet ; 13: 885932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692829

RESUMO

In the last decade, several countries have included feed efficiency (as residual feed intake; RFI) in their breeding goal. Recent studies showed that RFI is favorably correlated with methane emissions. Thus, selecting for lower emitting animals indirectly through RFI could be a short-term strategy in order to achieve the intended reduction set by the EU Commission (-55% for 2030). The objectives were to 1) estimate genetic parameters for six methane traits, including genetic correlations between methane traits, production, and feed efficiency traits, 2) evaluate the expected correlated response of methane traits when selecting for feed efficiency with or without including methane, 3) quantify the impact of reducing methane emissions in dairy cattle using the Danish Holstein population as an example. A total of 26,664 CH4 breath records from 647 Danish Holstein cows measured over 7 years in a research farm were analyzed. Records on dry matter intake (DMI), body weight (BW), and energy corrected milk (ECM) were also available. Methane traits were methane concentration (MeC, ppm), methane production (MeP; g/d), methane yield (MeY; g CH4/kg DMI), methane intensity (MeI; g CH4/kg ECM), residual methane concentration (RMeC), residual methane production (RMeP, g/d), and two definitions of residual feed intake with or without including body weight change (RFI1, RFI2). The estimated heritability of MeC was 0.20 ± 0.05 and for MeP, it was 0.21 ± 0.05, whereas heritability estimates for MeY and MeI were 0.22 ± 0.05 and 0.18 ± 0.04, and for the RMeC and RMeP, they were 0.23 ± 0.06 and 0.16 ± 0.02, respectively. Genetic correlations between methane traits ranged from moderate to highly correlated (0.48 ± 0.16-0.98 ± 0.01). Genetic correlations between methane traits and feed efficiency were all positive, ranging from 0.05 ± 0.20 (MeI-RFI2) to 0.76 ± 0.09 (MeP-RFI2). Selection index calculations showed that selecting for feed efficiency has a positive impact on reducing methane emissions' expected response, independently of the trait used (MeP, RMeP, or MeI). Nevertheless, adding a negative economic value for methane would accelerate the response and help to reach the reduction goal in fewer generations. Therefore, including methane in the breeding goal seems to be a faster way to achieve the desired methane emission reductions in dairy cattle.

3.
Front Microbiol ; 12: 636223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927700

RESUMO

Better characterization of changes in the rumen microbiota in dairy cows over the lactation period is crucial for understanding how microbial factors may potentially be interacting with host phenotypes. In the present study, we characterized the rumen bacterial and archaeal community composition of 60 lactating Holstein dairy cows (33 multiparous and 27 primiparous), sampled twice within the same lactation with a 122 days interval. Firmicutes and Bacteroidetes dominated the rumen bacterial community and showed no difference in relative abundance between samplings. Two less abundant bacterial phyla (SR1 and Proteobacteria) and an archaeal order (Methanosarcinales), on the other hand, decreased significantly from the mid-lactation to the late-lactation period. Moreover, between-sampling stability assessment of individual operational taxonomic units (OTUs), evaluated by concordance correlation coefficient (C-value) analysis, revealed the majority of the bacterial OTUs (6,187 out of 6,363) and all the 79 archaeal OTUs to be unstable over the investigated lactation period. The remaining 176 stable bacterial OTUs were mainly assigned to Prevotella, unclassified Prevotellaceae, and unclassified Bacteroidales. Milk phenotype-based screening analysis detected 32 bacterial OTUs, mainly assigned to unclassified Bacteroidetes and Lachnospiraceae, associated with milk fat percentage, and 6 OTUs, assigned to Ruminococcus and unclassified Ruminococcaceae, associated with milk protein percentage. These OTUs were only observed in the multiparous cows. None of the archaeal OTUs was observed to be associated with the investigated phenotypic parameters, including methane production. Co-occurrence analysis of the rumen bacterial and archaeal communities revealed Fibrobacter to be positively correlated with the archaeal genus vadinCA11 (Pearson r = 0.76) and unclassified Methanomassiliicoccaceae (Pearson r = 0.64); vadinCA11, on the other hand, was negatively correlated with Methanobrevibacter (Pearson r = -0.56). In conclusion, the rumen bacterial and archaeal communities of dairy cows displayed distinct stability at different taxonomic levels. Moreover, specific members of the rumen bacterial community were observed to be associated with milk phenotype parameters, however, only in multiparous cows, indicating that dairy cow parity could be one of the driving factors for host-microbe interactions.

4.
ISME J ; 14(8): 2019-2033, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32366970

RESUMO

Reducing methane emissions from livestock production is of great importance for the sustainable management of the Earth's environment. Rumen microbiota play an important role in producing biogenic methane. However, knowledge of how host genetics influences variation in ruminal microbiota and their joint effects on methane emission is limited. We analyzed data from 750 dairy cows, using a Bayesian model to simultaneously assess the impact of host genetics and microbiota on host methane emission. We estimated that host genetics and microbiota explained 24% and 7%, respectively, of variation in host methane levels. In this Bayesian model, one bacterial genus explained up to 1.6% of the total microbiota variance. Further analysis was performed by a mixed linear model to estimate variance explained by host genomics in abundances of microbial genera and operational taxonomic units (OTU). Highest estimates were observed for a bacterial OTU with 33%, for an archaeal OTU with 26%, and for a microbial genus with 41% heritability. However, after multiple testing correction for the number of genera and OTUs modeled, none of the effects remained significant. We also used a mixed linear model to test effects of individual host genetic markers on microbial genera and OTUs. In this analysis, genetic markers inside host genes ABS4 and DNAJC10 were found associated with microbiota composition. We show that a Bayesian model can be utilized to model complex structure and relationship between microbiota simultaneously and their interaction with host genetics on methane emission. The host genome explains a significant fraction of between-individual variation in microbial abundance. Individual microbial taxonomic groups each only explain a small amount of variation in methane emissions. The identification of genes and genetic markers suggests that it is possible to design strategies for breeding cows with desired microbiota composition associated with phenotypes.


Assuntos
Metano , Microbiota , Animais , Archaea/genética , Teorema de Bayes , Bovinos , Dieta , Feminino , Microbiota/genética , Rúmen
5.
J Dairy Sci ; 103(5): 4557-4569, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32197852

RESUMO

Subclinical metabolic disorders such as ketosis cause substantial economic losses for dairy farmers in addition to the serious welfare issues they pose for dairy cows. Major hurdles in genetic improvement against metabolic disorders such as ketosis include difficulties in large-scale phenotype recording and low heritability of traits. Milk concentrations of ketone bodies, such as acetone and ß-hydroxybutyric acid (BHB), might be useful indicators to select cows for low susceptibility to ketosis. However, heritability estimates reported for milk BHB and acetone in several dairy cattle breeds were low. The rumen microbial community has been reported to play a significant role in host energy homeostasis and metabolic and physiologic adaptations. The current study aims at investigating the effects of cows' genome and rumen microbial composition on concentrations of acetone and BHB in milk, and identifying specific rumen microbial taxa associated with variation in milk acetone and BHB concentrations. We determined the concentrations of acetone and BHB in milk using nuclear magnetic resonance spectroscopy on morning milk samples collected from 277 Danish Holstein cows. Imputed high-density genotype data were available for these cows. Using genomic and microbial prediction models with a 10-fold resampling strategy, we found that rumen microbial composition explains a larger proportion of the variation in milk concentrations of acetone and BHB than do host genetics. Moreover, we identified associations between milk acetone and BHB with some specific bacterial and archaeal operational taxonomic units previously reported to have low to moderate heritability, presenting an opportunity for genetic improvement. However, higher covariation between specific microbial taxa and milk acetone and BHB concentrations might not necessarily indicate a causal relationship; therefore further validation is needed before considering implementation in selection programs.


Assuntos
Doenças dos Bovinos/diagnóstico , Microbioma Gastrointestinal , Cetose/veterinária , Leite/química , Rúmen/microbiologia , Ácido 3-Hidroxibutírico/análise , Acetona/análise , Animais , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/microbiologia , Feminino , Testes Genéticos/veterinária , Corpos Cetônicos/análise , Cetose/diagnóstico , Lactação , Fenótipo , Rúmen/metabolismo
6.
Sci Rep ; 10(1): 2953, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076041

RESUMO

Exploring dominance variance and loci contributing to dominance variation is important to understand the genetic architecture behind quantitative traits. The objectives of this study were i) to estimate dominance variances, ii) to detect quantitative trait loci (QTL) with dominant effects, and iii) to evaluate the power and the precision of identifying loci with dominance effect through post-hoc simulations, with applications for female fertility in Danish Holstein cattle. The female fertility records analyzed were number of inseminations (NINS), days from calving to first insemination (ICF), and days from the first to last insemination (IFL), covering both abilities to recycle and to get pregnant in the female reproductive cycle. There were 3,040 heifers and 4,483 cows with both female fertility records and Illumina BovineSNP50 BeadChip genotypes (35,391 single nucleotide polymorphisms (SNP) after quality control). Genomic best linear unbiased prediction (BLUP) models were used to estimate additive and dominance genetic variances. Linear mixed models were used for association analyses. A post-hoc simulation study was performed using genotyped heifers' data. In heifers, estimates of dominance genetic variances for female fertility traits were larger than additive genetic variances, but had large standard errors. The variance components for fertility traits in cows could not be estimated due to non-convergence of the statistical model. In total, five QTL located on chromosomes 9, 11 (2 QTL), 19, and 28 were identified and all of them showed both additive and dominance genetic effects. Among them, the SNP rs29018921 on chromosome 9 is close to a previously identified QTL in Nordic Holstein for interval between first and last insemination. This SNP is located in the 3' untranslated region of gene peptidylprolyl isomerase like 4 (PPIL4), which was shown to be associated with milk production traits in US Holstein cattle but not known for fertility-related functions. Simulations indicated that the current sample size had limited power to detect QTL with dominance effects for female fertility probably due to low QTL variance. More females need to be genotyped to achieve reliable mapping of QTL with dominance effects for female fertility.


Assuntos
Fertilidade/genética , Genes Dominantes , Modelos Genéticos , Locos de Características Quantitativas , Seleção Artificial , Animais , Bovinos , Indústria de Laticínios , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
7.
Animals (Basel) ; 9(8)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362392

RESUMO

Identifying factors that influence the composition of the microbial population in the digestive system of dairy cattle will be key in regulating these populations to reduce greenhouse gas emissions. In this study, we analyzed rumen and fecal samples from five high residual feed intake (RFI) Holstein cows, five low RFI Holstein cows, five high RFI Jersey cows and five low RFI Jersey cows, fed either a high-concentrate diet (expected to reduce methane emission) or a high-forage diet. Bacterial communities from both the rumen and feces were profiled using Illumina sequencing on the 16S rRNA gene. Rumen archaeal communities were profiled using Terminal-Restriction Fragment Length Polymorphism (T-RFLP) targeting the mcrA gene. The rumen methanogen community was influenced by breed but not by diet or RFI. The rumen bacterial community was influenced by breed and diet but not by RFI. The fecal bacterial community was influenced by individual animal variation and, to a lesser extent, by breed and diet but not by RFI. Only the bacterial community correlated with methane production. Community differences seen in the rumen were reduced or absent in feces, except in the case of animal-to-animal variation, where differences were more pronounced. The two cattle breeds had different levels of response to the dietary intervention; therefore, it may be appropriate to individually tailor methane reduction strategies to each cattle breed.

8.
J Anim Sci ; 97(9): 3832-3844, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31278866

RESUMO

In recent years, metabolomics has been used to clarify the biology underlying biological samples. In the field of animal breeding, investigating the magnitude of genetic control on the metabolomic profiles of animals and their relationships with quantitative traits adds valuable information to animal improvement schemes. In this study, we analyzed metabolomic features (MFs) extracted from the metabolomic profiles of 843 male Holstein calves. The metabolomic profiles were obtained using nuclear magnetic resonance (NMR) spectroscopy. We investigated 2 alternative methods to control for peak shifts in the NMR spectra, binning and aligning, to determine which approach was the most efficient for assessing genetic variance. Series of univariate analyses were implemented to elucidate the heritability of each MF. Furthermore, records on BW and ADG from 154 to 294 d of age (ADG154-294), 294 to 336 d of age (ADG294-336), and 154 to 336 d of age (ADG154-336) were used in a series of bivariate analyses to establish the genetic and phenotypic correlations with MFs. Bivariate analyses were only performed for MFs that had a heritability significantly different from zero. The heritabilities obtained in the univariate analyses for the MFs in the binned data set were low (<0.2). In contrast, in the aligned data set, we obtained moderate heritability (0.2 to 0.5) for 3.5% of MFs and high heritability (more than 0.5) for 1% of MFs. The bivariate analyses showed that ~12%, ~3%, ~9%, and ~9% of MFs had significant additive genetic correlations with BW, ADG154-294, ADG294-336, and ADG154-336, respectively. In all of the bivariate analyses, the percentage of significant additive genetic correlations was higher than the percentage of significant phenotypic correlations of the corresponding trait. Our results provided insights into the influence of the underlying genetic mechanisms on MFs. Further investigations in this field are needed for better understanding of the genetic relationship among the MFs and quantitative traits.


Assuntos
Bovinos/genética , Variação Genética , Metabolômica , Animais , Peso Corporal/genética , Bovinos/metabolismo , Feminino , Masculino , Fenótipo , Aumento de Peso/genética
9.
J Dairy Sci ; 102(7): 6319-6329, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31103308

RESUMO

Organic dairy cows in Denmark are often kept indoors during the winter and outside at least part time in the summer. Consequently, their diet changes by the season. We hypothesized that grazing might affect enteric CH4 emissions due to changes in the nutrition, maintenance, and activity of the cows, and they might differentially respond to these factors. This study assessed the repeatability of enteric CH4 emission measurements for Jersey cattle in a commercial organic dairy herd in Denmark. It also evaluated the effects of a gradual transition from indoor winter feeding to outdoor spring grazing. Further, it assessed the individual-level correlations between measurements during the consecutive feeding periods (phenotype × environment, P × E) as neither pedigrees nor genotypes were available to estimate a genotype by environment effect. Ninety-six mixed-parity lactating Jersey cows were monitored for 30 d before grazing and for 24 d while grazing. The cows spent 8 to 11 h grazing each day and had free access to an in-barn automatic milking system (AMS). For each visit to the AMS, milk yield was recorded and logged along with date and time. Monitoring equipment installed in the AMS feed bins continuously measured enteric CH4 and CO2 concentrations (ppm) using a noninvasive "sniffer" method. Raw enteric CH4 and CO2 concentrations and their ratio (CH4:CO2) were derived from average concentrations measured during milking and per day for each cow. We used mixed models equations to estimate variance components and adjust for the fixed and random effects influencing the analyzed gas concentrations. Univariate models were used to precorrect the gas measurements for diurnal variation and to estimate the direct effect of grazing on the analyzed concentrations. A bivariate model was used to assess the correlation between the 2 periods (in-barn vs. grazing) for each gas concentration. Grazing had a weak P × E interaction for daily average CH4 and CO2 gas concentrations. Bivariate repeatability estimates for average CH4 and CO2 concentrations and CH4:CO2 were 0.77 to 0.78, 0.73 to 0.80, and 0.26, respectively. Repeatability for CH4:CO2 was low (0.26) but indicated some between-animal variation. In conclusion, grazing does not create significant shifts compared with indoor feeding in how animals rank for average CH4 and CO2 concentrations and CH4:CO2. We found no evidence that separate evaluation is needed to quantify enteric CH4 and CO2 emissions from Jersey cows during in-barn and grazing periods.


Assuntos
Bovinos/fisiologia , Metano/análise , Estômago de Ruminante/metabolismo , Animais , Dinamarca , Comportamento Alimentar , Feminino , Lactação , Masculino , Metano/metabolismo , Leite/química , Leite/metabolismo , Estado Nutricional , Fenótipo , Estações do Ano , Estômago de Ruminante/química
10.
J Dairy Res ; 86(1): 19-24, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30729906

RESUMO

The main objective of this study was to compare the performance of different 'nonlinear quantile regression' models evaluated at the τth quantile (0·25, 0·50, and 0·75) of milk production traits and somatic cell score (SCS) in Iranian Holstein dairy cows. Data were collected by the Animal Breeding Center of Iran from 1991 to 2011, comprising 101 051 monthly milk production traits and SCS records of 13 977 cows in 183 herds. Incomplete gamma (Wood), exponential (Wilmink), Dijkstra and polynomial (Ali & Schaeffer) functions were implemented in the quantile regression. Residual mean square, Akaike information criterion and log-likelihood from different models and quantiles indicated that in the same quantile, the best models were Wilmink for milk yield, Dijkstra for fat percentage and Ali & Schaeffer for protein percentage. Over all models the best model fit occurred at quantile 0·50 for milk yield, fat and protein percentage, whereas, for SCS the 0·25th quantile was best. The best model to describe SCS was Dijkstra at quantiles 0·25 and 0·50, and Ali & Schaeffer at quantile 0·75. Wood function had the worst performance amongst all traits. Quantile regression is specifically appropriate for SCS which has a mixed multimodal distribution.


Assuntos
Bovinos/genética , Bovinos/fisiologia , Indústria de Laticínios/estatística & dados numéricos , Lactação/genética , Animais , Contagem de Células , Gorduras/análise , Feminino , Irã (Geográfico) , Lactação/fisiologia , Leite/química , Leite/citologia , Proteínas do Leite/análise , Modelos Teóricos , Dinâmica não Linear , Característica Quantitativa Herdável , Análise de Regressão
11.
PLoS Genet ; 14(10): e1007580, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30312316

RESUMO

Cattle and other ruminants produce large quantities of methane (~110 million metric tonnes per annum), which is a potent greenhouse gas affecting global climate change. Methane (CH4) is a natural by-product of gastro-enteric microbial fermentation of feedstuffs in the rumen and contributes to 6% of total CH4 emissions from anthropogenic-related sources. The extent to which the host genome and rumen microbiome influence CH4 emission is not yet well known. This study confirms individual variation in CH4 production was influenced by individual host (cow) genotype, as well as the host's rumen microbiome composition. Abundance of a small proportion of bacteria and archaea taxa were influenced to a limited extent by the host's genotype and certain taxa were associated with CH4 emissions. However, the cumulative effect of all bacteria and archaea on CH4 production was 13%, the host genetics (heritability) was 21% and the two are largely independent. This study demonstrates variation in CH4 emission is likely not modulated through cow genetic effects on the rumen microbiome. Therefore, the rumen microbiome and cow genome could be targeted independently, by breeding low methane-emitting cows and in parallel, by investigating possible strategies that target changes in the rumen microbiome to reduce CH4 emissions in the cattle industry.


Assuntos
Bovinos/microbiologia , Metano/metabolismo , Microbiota/fisiologia , Leite/química , Rúmen/microbiologia , Animais , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Bovinos/classificação , Bovinos/genética , Feminino , Genoma/genética , Genótipo , Interações entre Hospedeiro e Microrganismos/genética , Microbiota/genética , Rúmen/metabolismo
12.
J Dairy Sci ; 101(11): 9847-9862, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30172409

RESUMO

In the present study, we hypothesized that the rumen bacterial and archaeal communities would change significantly over the transition period of dairy cows, mainly as an adaptation to the classical use of low-grain prepartum and high-grain postpartum diets. Bacterial 16S rRNA gene amplicon sequencing of rumen samples from 10 primiparous Holstein dairy cows revealed no changes over the transition period in relative abundance of genera such as Ruminococcus, Butyrivibrio, Clostridium, Coprococcus, and Pseudobutyrivibrio. However, other dominant genus-level taxa, such as Prevotella, unclassified Ruminococcaceae, and unclassified Succinivibrionaceae, showed distinct changes in relative abundance from the prepartum to the postpartum period. Overall, we observed individual fluctuation patterns over the transition period for a range of bacterial taxa that, in some cases, were correlated with observed changes in the rumen short-chain fatty acids profile. Combined results from clone library and terminal-restriction fragment length polymorphism (T-RFLP) analyses, targeting the methyl-coenzyme M reductase α-subunit (mcrA) gene, revealed a methanogenic archaeal community dominated by the Methanobacteriales and Methanomassiliicoccales orders, particularly the genera Methanobrevibacter, Methanosphaera, and Methanomassiliicoccus. As observed for the bacterial community, the T-RFLP patterns showed significant shifts in methanogenic community composition over the transition period. Together, the composition of the rumen bacterial and archaeal communities exhibited changes in response to particularly the dietary changes of dairy cows over the transition period.


Assuntos
Ração Animal , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Bovinos/microbiologia , Microbioma Gastrointestinal , Rúmen/microbiologia , Animais , Archaea/classificação , Bactérias/classificação , Ácidos Graxos Voláteis/metabolismo , Feminino , Tipagem Molecular , Polimorfismo de Fragmento de Restrição , Período Pós-Parto , Gravidez , RNA Ribossômico 16S , Rúmen/metabolismo
13.
Front Genet ; 9: 141, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755506

RESUMO

Because mastitis is very frequent and unavoidable, adding recovery information into the analysis for genetic evaluation of mastitis is of great interest from economical and animal welfare point of view. Here we have performed genome-wide association studies (GWAS) to identify associated single nucleotide polymorphisms (SNPs) and investigate the genetic background not only for susceptibility to - but also for recoverability from mastitis. Somatic cell count records from 993 Danish Holstein cows genotyped for a total of 39378 autosomal SNP markers were used for the association analysis. Single SNP regression analysis was performed using the statistical software package DMU. Substitution effect of each SNP was tested with a t-test and a genome-wide significance level of P-value < 10-4 was used to declare significant SNP-trait association. A number of significant SNP variants were identified for both traits. Many of the SNP variants associated either with susceptibility to - or recoverability from mastitis were located in or very near to genes that have been reported for their role in the immune system. Genes involved in lymphocyte developments (e.g., MAST3 and STAB2) and genes involved in macrophage recruitment and regulation of inflammations (PDGFD and PTX3) were suggested as possible causal genes for susceptibility to - and recoverability from mastitis, respectively. However, this is the first GWAS study for recoverability from mastitis and our results need to be validated. The findings in the current study are, therefore, a starting point for further investigations in identifying causal genetic variants or chromosomal regions for both susceptibility to - and recoverability from mastitis.

14.
PLoS One ; 12(11): e0187858, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117259

RESUMO

Dairy cows experience dramatic changes in host physiology from gestation to lactation period and dietary switch from high-forage prepartum diet to high-concentrate postpartum diet over the transition period (parturition +/- three weeks). Understanding the community structure and activity of the rumen microbiota and its associative patterns over the transition period may provide insight for e.g. improving animal health and production. In the present study, rumen samples from ten primiparous Holstein dairy cows were collected over seven weeks spanning the transition period. Total RNA was extracted from the rumen samples and cDNA thereof was subsequently used for characterizing the metabolically active bacterial (16S rRNA transcript amplicon sequencing) and archaeal (qPCR, T-RFLP and mcrA and 16S rRNA transcript amplicon sequencing) communities. The metabolically active bacterial community was dominated by three phyla, showing significant changes in relative abundance range over the transition period: Firmicutes (from prepartum 57% to postpartum 35%), Bacteroidetes (from prepartum 22% to postpartum 18%) and Proteobacteria (from prepartum 7% to postpartum 32%). For the archaea, qPCR analysis of 16S rRNA transcript number, revealed a significant prepartum to postpartum increase in Methanobacteriales, in accordance with an observed increase (from prepartum 80% to postpartum 89%) in relative abundance of 16S rRNA transcript amplicons allocated to this order. On the other hand, a significant prepartum to postpartum decrease (from 15% to 2%) was observed in relative abundance of Methanomassiliicoccales 16S rRNA transcripts. In contrast to qPCR analysis of the 16S rRNA transcripts, quantification of mcrA transcripts revealed no change in total abundance of metabolically active methanogens over the transition period. According to T-RFLP analysis of the mcrA transcripts, two Methanobacteriales genera, Methanobrevibacter and Methanosphaera (represented by the T-RFs 39 and 267 bp), represented more than 70% of the metabolically active methanogens, showing no significant changes over the transition period; minor T-RFs, likely to represent members of the order Methanomassiliicoccales and with a relative abundance below 5% in total, decreased significantly over the transition period. In accordance with the T-RFLP analysis, the mcrA transcript amplicon sequencing revealed Methanobacteriales to cover 99% of the total reads, dominated by the genera Methanobrevibacter (75%) and Methanosphaera (24%), whereas the Methanomassiliicoccales order covered only 0.2% of the total reads. In conclusion, the present study showed that the structure of the metabolically active bacterial and archaeal rumen communities changed over the transition period, likely in response to the dramatic changes in physiology and nutritional factors like dry matter intake and feed composition. It should be noted however that for the methanogens, the observed community changes were influenced by the analyzed gene (mcrA or 16S rRNA).


Assuntos
Bacteroidetes/metabolismo , Firmicutes/metabolismo , Microbioma Gastrointestinal/genética , Methanobacteriales/metabolismo , Proteobactérias/metabolismo , Rúmen/microbiologia , Ração Animal/análise , Bem-Estar do Animal , Animais , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bovinos , Dieta , Feminino , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Lactação/fisiologia , Methanobacteriales/classificação , Methanobacteriales/genética , Methanobacteriales/isolamento & purificação , Oxirredutases/genética , Parto/fisiologia , Filogenia , Polimorfismo de Fragmento de Restrição , Período Pós-Parto/fisiologia , Gravidez , Análise de Componente Principal , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética
15.
J Dairy Sci ; 100(10): 8188-8196, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28780110

RESUMO

The objective of this study was to evaluate the improvement of the accuracy of estimated breeding values for ability to recycle after calving by using information of genomic markers and phenotypic information of correlated traits. The traits in this study were the interval from calving to first insemination (CFI), based on artificial insemination data, and the interval from calving to first high activity (CFHA), recorded from activity tags, which could better measure ability to recycle after caving. The phenotypic data set included 1,472,313 records from 820,218 cows for CFI, and 36,504 records from 25,733 cows for CFHA. The genomic information was available for 3,159 progeny-tested sires, which were genotyped using Illumina Bovine SNP50 BeadChip (Illumina, San Diego, CA). Heritability estimates were 0.06 for the interval from calving to first insemination and 0.14 for the interval from calving to first high activity, and the genetic correlation between both traits was strong (0.87). Breeding values were obtained using 4 models: conventional single-trait BLUP; conventional multitrait BLUP with pedigree-based relationship matrix; single-trait single-step genomic BLUP; and multitrait single-step genomic BLUP model with joint relationship matrix combining pedigree and genomic information. The results showed that reliabilities of estimated breeding values (EBV) from single-step genomic BLUP models were about 40% higher than those from conventional BLUP models for both traits. Furthermore, using a multitrait model doubled the reliability of breeding values for CFHA, whereas no gain was observed for CFI. The best model was the multitrait single-step genomic BLUP, which resulted in a reliability of EBV 0.19 for CFHA and 0.14 for CFI. The results indicate that even though a relatively small number of records for CFHA were available, with genomic information and using multitrait model, the reliability of EBV for CFHA is acceptable. Thus, it is feasible to include CFHA in Nordic Holstein breeding evaluations to improve fertility performance.


Assuntos
Cruzamento , Fertilidade/genética , Genômica , Modelos Genéticos , Fenótipo , Animais , Bovinos , Feminino , Genótipo , Inseminação Artificial/veterinária , Reprodutibilidade dos Testes
16.
J Dairy Sci ; 99(12): 9857-9863, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27720153

RESUMO

Dairy cows milked in automatic milking systems (AMS) with more than 1 milking box may, as individuals, have a preference for specific milking boxes if allowed free choice. Estimates of quantitative genetic variation in behavioral traits of farmed animals have previously been reported, with estimates of heritability ranging widely. However, for the consistency of choice in dairy cows, almost no published estimates of heritability exist. The hypothesis for this study was that choice consistency is partly under additive genetic control and partly controlled by permanent environmental (animal) effects. The aims of this study were to obtain estimates of genetic and phenotypic parameters for choice consistency in dairy cows milked in AMS herds. Data were obtained from 5 commercial Danish herds (I-V) with 2 AMS milking boxes (A, B). Milking data were only from milkings where both the present and the previous milkings were coded as completed. This filter was used to fulfill a criterion of free-choice situation (713,772 milkings, 1,231 cows). The lactation was divided into 20 segments covering 15d each, from 5 to 305d in milk. Choice consistency scores were obtained as the fraction of milkings without change of box [i.e., 1.0 - µ(box change)] for each segment. Data were analyzed for one part of lactation at a time using a linear mixed model for first-parity cows alone and for all parities jointly. Choice consistency was found to be only weakly heritable (heritability=0.02 to 0.14) in first as well as in later parities, and having intermediate repeatability (repeatability coefficients=0.27 to 0.56). Heritability was especially low at early and late lactation states. These results indicate that consistency, which is itself an indication of repeated similar choices, is also repeatable as a trait observed over longer time periods. However, the genetic background seems to play a smaller role compared with that of the permanent animal effects, indicating that consistency could also be a learned behavior. We concluded that consistency in choices are quantifiable, but only under weak genetic control.


Assuntos
Indústria de Laticínios , Leite , Animais , Bovinos , Feminino , Variação Genética , Lactação , Paridade , Fatores de Tempo
17.
J Dairy Sci ; 99(12): 9834-9844, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27692722

RESUMO

The objective of this study was to investigate whether genotype by environment interaction exists for female fertility traits and production of energy-corrected milk at 70d in milk (ECM70). Fertility traits considered were the activity-based estrus traits interval from calving to first high activity (CFHA), duration of high activity episode (DHA), as an indicator for first estrus duration, and strength of high activity episode (SHA), as an indicator for first estrus strength. The physical activity traits were derived from electronic activity tags for 11,522 first-parity cows housed in 125 commercial dairy herds. Data were analyzed using a univariate random regression animal model (URRM), by regressing the phenotypic performance on the average herd ECM70 as an environmental gradient. Furthermore, the genetic correlations between CFHA and ECM70 as a function of production level were estimated using a bivariate random regression animal model (BRRM). For all traits, heterogeneity of additive genetic variances and heritability estimates was observed. The heritability estimate for CFHA decreased from 0.25 to 0.10 with increasing production level and the heritability estimate for ECM70 decreased from 0.35 to 0.15 with increasing production level using URRM. The genetic correlation of the same trait in low and high production levels was around 0.74 for CFHA and 0.80 for ECM70 using URRM, but when data were analyzed using the multiple-trait analysis (MT), genetic correlation estimates between low and high production levels were not significantly different from unity. Furthermore, the genetic correlation of SHA between low and high production level was 0.22 using URRM, but the corresponding correlation estimate had large standard error when data were analyzed using MT. The genetic correlation between CFHA and ECM70 as a function of production environment was weak but unfavorable and decreased slightly from 0.09 to 0.04 with increasing production level using BRRM. Moreover, the same trend was observed when the data were analyzed using MT where the genetic correlation between CFHA and ECM70 in the low production environment was 0.29 compared with -0.13 in the high production environment, but these estimates had large standard errors. In conclusion, regardless of the trait used, in relation to average herd ECM70 production, the results indicated no clear evidence of strong genotype by environment interaction that would cause significant re-ranking of sires between low and high production environments.


Assuntos
Interação Gene-Ambiente , Lactação/genética , Animais , Bovinos , Meio Ambiente , Estro/genética , Feminino , Fertilidade/genética , Genótipo , Leite , Fenótipo
18.
J Dairy Sci ; 99(7): 5498-5507, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27085411

RESUMO

The objectives of this study were to investigate genotype by environment interaction effects, with environments defined as calving month and geographic location, on the interval from calving to first insemination (CFI) of Holstein cows in Denmark and Sweden. The data set included 811,285 records on CFI for first-parity cows from January 2010 to January 2014 housed in 7,458 herds. The longest mean CFI was 84.7 d for cows calving in April and the shortest was 76.3 d for cows calving in September. The longest mean CFI of 87.1 d was recorded at the northernmost location (LOC-8), whereas the shortest mean CFI of 73.5 d was recorded at the southernmost location (LOC-1). The multiple trait approach, in which CFI values in different calving months and different geographic locations were treated as different traits, was used to estimate the variance components and genetic correlations for CFI by using the average information (AI)-REML procedure in a bivariate sire model. Estimates of genetic variance and heritability were highest for January calvings and 3 times smaller for June calvings. Location 2 had the highest heritability and LOC-8 the lowest, with heritability estimates decreasing from LOC-2 to LOC-8. Genetic correlations of CFI between calving months were weakest between cold months (December and January) and warm months (June, August, and September); the lowest estimate was found between January and September calvings. Genetic correlations of CFI between the different geographic locations were generally strong, and the weakest correlation was between LOC-3 and LOC-8. These results indicate a genotype by environment interaction for CFI primarily regarding seasons described by calving months. The effect of geographic location was less important, mostly producing a scaling effect of CFI in different locations. We concluded that CFI is more sensitive to seasonal effects than geographic locations in Denmark and Sweden.


Assuntos
Bovinos/genética , Interação Gene-Ambiente , Genótipo , Inseminação , Parto , Animais , Bovinos/fisiologia , Dinamarca , Meio Ambiente , Feminino , Fertilidade/genética , Variação Genética , Paridade , Fenótipo , Gravidez , Estações do Ano , Suécia , Fatores de Tempo
19.
J Dairy Sci ; 99(6): 4580-4585, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26995137

RESUMO

Some dairy cows excrete large amounts of P through their urine; thus, it was speculated that a genetic defect related to their efficiency in uptake of P or recirculation of P could cause such an effect. This speculation was pursued in a cross sectional study on 139 cows (103 Holstein and 36 Jersey) from an experimental herd using repeated sampling of urine (301 samples) to investigate sources of variation in urinary P concentration (Pu). Urine samples were taken on 6 testing sessions spread over 2 mo. Each sample was obtained by mild manual stimulation of the rear udder escutcheon area. The samples were immediately assayed for pH, stored frozen, and assayed for inorganic P and creatinine. Concentrations of P and creatinine in urine, the ratio of Pu to creatinine, and pH were analyzed using a linear mixed model. The model included fixed effects of breed, parity number, and sampling session. Stage of lactation was fitted as Wilmink-type lactation curves. Random effects included additive polygenic ancestry, permanent animal effects, and residual. The distribution of Pu approximated normality except for a single sample with very high Pu and very low pH. This sample came from a cow diagnosed independently with ketosis. For the remaining samples, it was shown that Pu has low to moderate heritability (0.12) and is only moderately repeatable (0.21). Based on a small data set, it is tentatively concluded that individual differences between cows exist in their Pu, and individual differences presumably result from genetic differences. However, it remains unclear if cows with genetically lower or higher Pu will perform better on a low-P diet.


Assuntos
Bovinos/metabolismo , Fósforo na Dieta/urina , Urina/química , Animais , Bovinos/genética , Estudos Transversais , Dinamarca , Feminino , Modelos Genéticos
20.
J Dairy Sci ; 99(3): 1959-1967, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26805978

RESUMO

The objective of this study was to estimate heritability of enteric methane emissions from dairy cattle. Methane (CH4) and CO2 were measured with a portable air-sampler and analyzer unit based on Fourier transform infrared detection. Data were collected on 3,121 Holstein dairy cows from 20 herds using automatic milking systems. Three CH4 phenotypes were acquired: the ratio between CH4 and CO2 in the breath of the cows (CH4_RATIO), the estimated quantified amount of CH4 (in g/d) measured over a week (CH4_GRAMSw), and CH4 intensity, defined as grams of CH4 per liter of milk produced (CH4_MILK). Fat- and protein-corrected milk (FPCM) and live weight data were also derived for the analysis. Data were analyzed using several univariate and bivariate linear animal models. The heritability of CH4_GRAMSw and CH4_MILK was 0.21 with a standard error of 0.06, and the heritability of CH4_RATIO was 0.16 with a standard error of 0.04. The 2 CH4 traits CH4_GRAMSw and CH4_RATIO were genetically highly correlated (rg=0.83) and they were strongly correlated with FPCM, meaning that, in this study, a high genetic potential for milk production will also mean a high genetic potential for CH4 production. The genetic correlation between CH4_MILK and FPCM and live weight showed similar patterns as the other CH4 phenotypes, although the correlations in general were closer to zero. The genetic correlations between the 3 CH4 phenotypes and live weight were low and only just significantly different from zero, meaning there is less indication of a genetic relationship between CH4 emission and live weight of the cow. None of the residual correlations between the ratio of CH4 and CO2, CH4 production in grams per day, FPCM, and live weight were significantly different from zero. The results from this study suggest that CH4 emission is partly under genetic control, that it is possible to decrease CH4 emission from dairy cattle through selection, and that selection for higher milk yield will lead to higher genetic merit for CH4 emission/cow per day.


Assuntos
Poluentes Atmosféricos/metabolismo , Bovinos/genética , Bovinos/metabolismo , Indústria de Laticínios/métodos , Hereditariedade , Metano/metabolismo , Animais , Peso Corporal , Feminino , Leite/química , Fenótipo , Espectroscopia de Infravermelho com Transformada de Fourier/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA